Adam Retter

: Security .
- in eXist-db =

Security in eXist-db

In the Past =
eXist-db 1.4 and before —_

* Unix like Security Model (attempted)
* ‘root’ user => ‘admin’ user
* ‘wheel’ group => ‘DBA’ group el
e Used ‘rwu’ flags and not ‘rwx’ —

‘|

‘|

* Users and Groups
* All stored in an XML file in the database

 /db/system/users.xml

Security in eXist-db

In the Past

eXist-db 1.4 and before
* Internally

* Each Permission Object (in memory):
e String for Username
* String for Password
* int for Permission mode -
— * Validation compares strings and int —_

"
,
\| | u
b
t

\u
$

}
P
-

* Stored on disk as (12 bytes): =
e int for user id =

* int for group id
e int for Permission mode

Security in eXist-db

In the Past =
eXist-db 1.4 and before —_

* Problems =
* Validation - String comparison is slow ==
* Changing XML file could result in inconsistent state
* No control over execution of XQuery/XSLT ==
* Permissions checks incomplete or incorrect —
* No centralised Security Manager ==
* No user/group metadata
* Too simple — users often built their own!

Security in eXist-db

_ Development was sponsored by: -
.- — Karl-Jaspers Centre, University of Heidelberg —
___ — Eric Palmer, University of Richmond :
= — Dmitriy Shabanov and Me (Adam Retter)! ==
= -
Thank You ©

Security in eXist-db

Completely Redesigned —

eXist-db 2.0

* Features =
 Centralised Security Manager* ==
* Multiple Realms (e.g. LDAP, OpenlID, OAuth)*
* Unix Style Permissions (performance) =1
* Access Control Lists e

‘|

* Permissions now follow the Unix Model (rwx) =
* Permissions are correctly enforced
* Better Password Security

e Extensible

Security in eXist-db

Centralised Security Manager
* All Security Tasks managed by Security Manager

* All authentication is through the Security Manager

* Configurable (/db/system/security/config.xml)
* Configure Realms

* Storage
* XML file per-user/group, per-realm

e.g. /db/system/security/exist/accounts
/db/system/security/exist/groups
* Transparently synced with in-memory model (safe)
* Metadata for user/group

Security in eXist-db

Multiple Realms

* eXist-db Internal Realm (default)

* LDAP (supports Microsoft Active Directory also)
* OpeniD
* OAuth

* SM will authentication against each realm in turn

* User/Group appears in eXist-db, postfixed with ‘@realm’
* e.g. adam.retter@ad.domain.com

1-icsecurity-manager xmlns="http://exist-db.org/Configuration™ last-account-1d="13" last-group-id="11" 1

2= <realm id="LDAP" principals-are-case-insensitive="true">

3w <context>

4 <url>ldap://ad.my-domain.de:389</url>

5 <domain>ad.my-domain.de</domain>

6~ <search>

7 <base>ou=my-office,dc=ad,dc=my-domain,dc=de</base>

8 <default-username>exist@ad.my-domain.de</default-username>

9 <default-password>my-password</default-password>

10 = <account>

11 <search-filter-prefix>objectClass=user</search-filter-prefix>

12 <search-attribute key="name">sAMAccountName</search-attribute>

13 <search-attribute key="dn">distinguishedName</search-attribute>

14 <search-attribute key="memberOf">memberOf</search-attribute>

15 <search-attribute key="primaryGroupID">primaryGroupID</search-attribute>

16 <search-attribute key="objectSid">objectSid</search-attribute>

17 <metadata-search-attribute key="http://axschema.org/namePerson">name</metadata-search
18 <metadata-search-attribute key="http://axschema.org/contact/email">mail</metadata-sea
19 </account>

20+ <group>

21 <search-filter-prefix>objectClass=group</search-filter-prefix>

22 <search-attribute key="name">sAMAccountName</search-attribute>

23 <search-attribute key="dn">distinguishedName</search-attribute>

24 <search-attribute key="primaryGroupToken">primaryGroupToken</search-attribute>

25 <search-attribute key="objectSid">objectSid</search-attribute>

26 <search-attribute key="member">member</search-attribute>

27 - <whitelist>

28 <principal>Domain Users</principal>

29 </whitelist>

30 </group>

31 </search>

32w <transformation>

33 <add-group>biblio.users</add-group>

34 </transformation> .

35 </context> Security Manager Col
36 </realm> LDAP Real

37 </security-managers>

Security in eXist-db

Unix Style Permissions (performance)

* Approach:
*Every single bit counts
* Binary Math is very very fast

* Each Permission Object

*In Memory Model is same as on-disk
— * int for Userld —
= * int for Groupld —
= * int for Permission mode =

— * Limit to 1048575 users and 1048575 groups -
- * Validation compares bit masks (very fast!) =
* TOTAL — 52 bits (4 spare for future) = 7 bytes.

e Saved 41% over 1.4.x

Security in eXist-db

Unix Style Permission Bitmap

—
= Just 52 bits!
= rwx 1.4.x was at least 96 bits
& ser 1D 19 21 23 B
- IIIIIIIIIIIIIIIIIIIII =
_; set UID :
- an -—
it Group ID 47 e
= IIIIIIIIIIIIIIIIIIIII =

set GID o
== rwx —
— 49 51

48
Sticky

Security in eXist-db

Access Control Lists (ACL)

* When Permissions are fast — you can have more!
* Complement the Unix Style Permission
* Any Collection or Resource may have an ACL
* Resolve many limitations of eXist-db user/group model.

|
1IN

» Access Control Lists consist of Access Control Entry(s) (ACE)
* ACL may have a maximum of 255 ACEs (just 1 byte itself!)
 Evaluation of ACEs is top-to-bottom
* Order in the ACL is significant!

i |
I |

* When present, ACL is evaluated before Unix Style Permission

* Very very powerful, but difficult to master!

Security in eXist-db

Access Control Entrys (ACEs)

* Associates individual group or user with access rights

e Consist of:

* Target Type — User or Group

* ID — The Id of the User or Group targeted
* Mode — Unix like, e.g. rwx =
— * Access Type — Allowed or Denied —
___ * TOTAL - 29 bits (3 spare for future) = 4 bytes. =

* Preserved across backups

 Java/Web Admin client shows a “+” if present!

Security in eXist-db

Access Control Entry Bitmap
Just 29 bits!

Yl LN M
'("1
e |

T t T
arge User/Group ID 26yp2eS

23 25
rWX

) i R

s LBl |
. N] ‘

I
|

Security in eXist-db

Permission XML Serialisation

With ACL and ACEs
| 1-<sm:permission xmlns:sm="http://exist-db.org/xquery/securitymanager" —
== . owner="admin" group="dba" mode="rw------- "> il
- 5= <sm:acl entries="2">
& <sm:ace index="@Q" target="USER" who="adam" access_type="DENIED" mode="rwx"/> =
—s <sm:ace index="1" target="GROUP" who="users" access_type="ALLOWED" mode="r-x"/> &=
</sm:acl>

|
|

7 </sm:permission>

Security in eXist-db

Access Control List Demo

* Examining permissions
* sm:get-permissions(...)

* Adding ACEs
* sm:add-user-ace(...)
* sm:add-group-ace(...) —

I ‘|

— ¢ Understanding Allowed and Denied Types =

* Understanding order of evaluation -

* Adding vs. Inserting ACEs

Security in eXist-db

Permission Enforcement

__ e+ eXist-db aligns with Unix Permissions Model
*Including ‘rwx’, need ‘x’ for XQuery scripts!

I

I'1W

* Permissions are enforced by:
* Permissions on Permission via. AOP
* @PermissionRequired Java Annotation
* Secure, woven in at Compile Time!
* Calls to Permission::validate(...) (TODO move to AOP)
* Anyone can use @PermissionRequired (its simple!)

i |
" |

* Checked on db operations and credential operations
* DBA group user like root/wheel, can be all powerful!

Flickr: CC-BY: Steelers Riot. by drewzhrodague

Security in eXist-db

Password Security

* eXist-db internal Realm
 Passwords are one way hashed for security ©
* Previously eXist-db <= 1.4.x used MD5 Hashes

* MD5 was good several years ago
* No longer considered secure

|
1IN

e eXist-db 2.0+ now uses RIPEMD-160 Hashes

* No Known Weaknesses
 Why not SHA?
* SHA-1 is insecure, need SHA-2
* RIPEMD is public and open, EU funded
* RIPEMD is just 160 bits, most likely faster?

i |
I |

Security in eXist-db

Questions?

T e IR | N e | |
1 1

‘ II I I 4 -’ll | I I I 4 -’ll | I II
' ' L y L

] now drive... i

.'.’;

‘,

A\

N

A\

N

