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A talk about incompatibility...
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Playing with 3 sizes of lego

After trying to fit together 3 different incompatible sizes of lego Léon
went into meltdown, not quite grasping the problem.



TODO...

1. The Portability Problem
2. Previous Efforts
3. Processor Varieties

4. Our Solution
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Context

XPDL
= XPath Derived Language e.g. XQuery/XSLT/XProc/XForms
= Typically uses F+O as Standard Library

Assumption: We want to write apps in XPDLs
= |ess code/impedance-mismatch
~67% reduction in LoC vs Java'
= Serve/Process the Web
= Process structure/semi-structured data
= Process mixed-content

1 Developing an Enterprise Web Application in XQuery i }

http://download.28msec.com/sausalito/technical_reading/enterprise_webapps.pdf EVOLVED BINARY



The Portability Problem

XPDLs are typically
specified as open
standards

...however...

Applications written in XPDLs
are rarely useable across
implementations (M)
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Vendor Extensions are EVIL!

Seem like a good idea at the time
= Easy/Quick to get something done

Many Types
= Syntax extensions
e.g xquery "1.0-ml";
= Data Type Extensions
e.g xs:binary-document
= Deviation from Standards

e.g fn:matches($input*, $pattern)
= |[ndexes, Triggers, etc.

= Extension Functions : W }
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XPDL Extension Functions

Our focus, due to their impact
= Disguised by standard function call interface

FunctionCall ::= EQName ArgumentList

= Distributed throughout an XPDL code-base

XPDL Extension Functions
= Typically implemented in lower-level language
C/ C++/Java / .NET etc.
= Vendor/Processor specific

Consistent across processor versions?

= EXPath

Requires reimplementation for every processor W
Not supported by all processors ; }
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Impact of Extension Functions

External Function Calls / Lines of Code
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Impact of Extension Functions

Distinct Function Calls
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Vendor Extensions ultimately:

Introduce Hurdles to Portability

Restrict user freedom
= Vendor lock-in
= Lesson the impact of frameworks

Fragment the XPDL community
= Create knowledge/skills silos

= Reduce code-sharing

= Limit code-reuse

Reduce collaboration
= XPDL Processor specific forks of XPDL apps

V)
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Other Efforts to Improve
Portability

XSLT 1.1 (2000)
= Stated primary goal - " improve stylesheet portability"
= Adds xsl:script for extension functions

= Highly contentious. Abandoned!

EXSLT (2001)
= Extended the XSLT 1.0 Standard Library
= Just a Specification
= Each vendor implemented for own processor

My
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Other Efforts to Improve
Portability

FunctX (2006)
= A Library of >150 useful common functions
= |mplementations in both XQuery and XSLT

EXQuery (2008)
= Just one specification to date: RESTXQ
= Common implementation in Java

EXPath (2009)
= Standards for extension functions

= Some common implementations in Java \7W b
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Lessons Learnt

Standards are nice, but require implementations
= Really need >50% of market-share to implement

Vendors are lazy/limited
= Standards are often retrospective!

Implementation Type Mapping (XSLT 1.1)
= Showed great promise for integration
= Must be implementation language agnostic

No single language for low-level implementation
= Won't be accepted by developers

= Won't be accepted by vendors W
VY
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Lessons Learnt

interface StandardFunc {
Item item(QueryContext gc, InputInfo ii) throws QueryException;

interface BasicFunction {
Sequence eval(Sequence[] args, Sequence contextSequence)
throws XPathException;

interface ExtensionFunctionCall {
Sequencelterator call(Sequencelterator|[] arguments, XPathContext context
throws XPathException;

class XQFunction {
public:
Sequence createSequence(DynamicContext* context, int flags=0) const;

V)
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Processor Varieties

We want to support XPDL Extension Functions
= For all XPDL processors
= What XPDL procesor implementations exist?

Current XPDL Processor Implementations by Language
12

XPDL Processor Implementations
(0]

C C++  Haskell Java JavaScript .NET Objective-C Pascal i | ' }

Implementation Language EVOLVED BINARY



Our Requirements

Focus on Extension Function Implementation
= Standardisation is alive in W3C and EXPath
= |deally implement just once (ever!)

= |deally compatible with any XPDL processor

Polyglot
= Must support at least Java and C++ implementations
= |deally also C for integration with other languages

Specify an Implementation Type Mapping
= XDM types to/from XPDL processor implementation

language types
V)
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Our Solution

Source-to-source Compilation

= Using the Haxe cross-platform tookit
= Haxe Lang for high-level implementation
Similar to ECMAScript

= Haxe cross-compiler for target implementation

XDM Implementation Type Mapping to Haxe Lang
Interfaces

Function Implementation Type Mapping to Haxe Lang
Interfaces

= Based on: XPath 3.0 Function Call

= Based on: XQuery 3.0 Function Declaration l W }
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Haxe XDM Impl. Type Mapping

interface Item {

public function stringValue() : xpdl.xdm.String;
}

interface AnyType {}

interface AnyAtomicType extends Item extends AnyType {}

class Boolean implements AnyAtomicType {
var value: Bool;
public function new(value) {
this.value = value;
}
public function stringValue() {
return new xpdl.xdm.String(Std.string(value));
}
public function haxe() {
return value;
}
}

class String implements AnyAtomicType {

var value: HString;

public function new(value) {
this.value = value;

}

public function stringValue() {
return this;

}

public function haxe() {
return value;

}

s My
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Haxe Function Implementation
Type Mapping

interface Function {
public function signature() : FunctionSignature;

public function eval(arguments: Array<Argument>, context: Context) : Sequence;

}

class FunctionSignature {
var name: QName;
var returnType: SequenceType;
var paramLists: Array<Array<Param>>;

public function new(name, returnType, paramLists) {
this.name = name;
this.returnType = returnType;
this.paramLists = paramLists;

https:/github.com/exquery/xpdl-extension-lib ¢ 7\ ” >
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https://github.com/exquery/xpdl-extension-lib

Proof-of-concept

Implementation of EXPath File Module
= Implemented in Haxe Lang
= Coded to XDM Implementation Type Mapping Interfaces

Focused on just file:exists function

[ | . .
exists path as string) as boolea

= Function Call Type + Function Implementation Type
= xs:string
= xs:boolean

Status
= Runnable on any processor that supports Haxe

Implementation Type Mapping \7W b
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file:exists in Haxe

class ExistsFunction implements Function {

private static var sig = new FunctionSignature(
new QName("exists", FileModule.NAMESPACE, FileModule.PREFIX),
new SequenceType(Some(new ItemOccurrence(Boolean))),

[
[

new Param(new QName('path"),
new SequenceType (Some(new ItemOccurrence(xpdl.xdm.Item.String))))

public function new() {}

public function signature() {
return sig;

}

public function eval(arguments : Array<Argument>, context: Context) {
var path = arguments[0].getArgument().iterator().next().stringValue().haxe();
var exists = FileSystem.exists(path);
return new ArraySequence( [ new Boolean(exists) ] );

V)
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Proof-of-concept: Processor

Added support to eXist
= Static mapping of Haxe XDM types
= Dynamic mapping of Haxe function call interfaces
Bytecode generation of classes and objects: cglib

= Currently ~300 lines of Java code

Status
" https://github.com/eXist-db/exist/tree/xpdl-extensions/src/org/exist/xpdl
= Supports Haxe XDM Function Implementation Type
Mapping
= Supports Haxe XDM Implementation Type Mapping

MY
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https://github.com/eXist-db/exist/tree/xpdl-extensions/src/org/exist/xpdl

Conclusion

Implement Once
Cross-Compile and Compile Once

Supports any processor
= Requires Vendor to (just once) implement:
XDM Implementation Type Mapping

Function Implementation Type Mapping

V)
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