Portable EXPath
Extension Functions

Adam Retter

adam@evolvedbinary.com

@adamretter
(M)
EVOLVED BINARY

Adam Retter

Consultant

= Scala/Java
= Concurrency
= XQuery, XSLT

Open Source Hacker
= Predominantly NoSQL Database Internals
= e.g. eXist, RocksDB, Shadoop (Hadoop M/R framework)

W3C Invited Expert for XQuery WG
Author of the "eXist" book for O'Reilly

XML Summer School Faculty (13/09/15) A W)

EVOLVED BINARY

A talk about incompatibility...

5 ‘,f’{
s 1.73(??‘

%
75 43
Vot ?

f;'o»/}:i LA T A

Phyllis Buchanan g% 907 1 3 Taken on June 21, 2008
fave comments

views ® @ @ Some rights reserved

Playing with 3 sizes of lego

After trying to fit together 3 different incompatible sizes of lego Léon
went into meltdown, not quite grasping the problem.

TODO...

1. The Portability Problem
2. Previous Efforts
3. Processor Varieties

4. Our Solution

VY

EVOLVED BINARY

Context

XPDL
= XPath Derived Language e.g. XQuery/XSLT/XProc/XForms
= Typically uses F+O as Standard Library

Assumption: We want to write apps in XPDLs
= |ess code/impedance-mismatch
~67% reduction in LoC vs Java'
= Serve/Process the Web
= Process structure/semi-structured data
= Process mixed-content

1 Developing an Enterprise Web Application in XQuery i }

http://download.28msec.com/sausalito/technical_reading/enterprise_webapps.pdf EVOLVED BINARY

The Portability Problem

XPDLs are typically
specified as open
standards

...however...

Applications written in XPDLs
are rarely useable across
implementations (M)

EVOLVED BINARY

Vendor Extensions are EVIL!

Seem like a good idea at the time
= Easy/Quick to get something done

Many Types
= Syntax extensions
e.g xquery "1.0-ml";
= Data Type Extensions
e.g xs:binary-document
= Deviation from Standards

e.g fn:matches($input*, $pattern)
= |[ndexes, Triggers, etc.

= Extension Functions : W }

EVOLVED BINARY

XPDL Extension Functions

Our focus, due to their impact
= Disguised by standard function call interface

FunctionCall ::= EQName ArgumentList

= Distributed throughout an XPDL code-base

XPDL Extension Functions
= Typically implemented in lower-level language
C/ C++/Java / .NET etc.
= Vendor/Processor specific

Consistent across processor versions?

= EXPath

Requires reimplementation for every processor W
Not supported by all processors ; }

EVOLVED BINARY

Impact of Extension Functions

External Function Calls / Lines of Code

Xproc.xq

eXide

xray

Project

XQSuite

graphxq

0 2000 4000 8000
Lines of Code (LoC)

6000
B External Function Calls Il Other 7 W }

EVOLVED BINARY

Impact of Extension Functions

Distinct Function Calls

Xproc.xq

eXide

xray

Project

XQSuite

graphxq

0 75 150 225 300

Function Calls

M Stdlib Distinct M Library Module Distinct [External Distinct

V)

EVOLVED BINARY

Vendor Extensions ultimately:

Introduce Hurdles to Portability

Restrict user freedom
= Vendor lock-in
= Lesson the impact of frameworks

Fragment the XPDL community
= Create knowledge/skills silos

= Reduce code-sharing

= Limit code-reuse

Reduce collaboration
= XPDL Processor specific forks of XPDL apps

V)

EVOLVED BINARY

Other Efforts to Improve
Portability

XSLT 1.1 (2000)
= Stated primary goal - " improve stylesheet portability"
= Adds xsl:script for extension functions

= Highly contentious. Abandoned!

EXSLT (2001)
= Extended the XSLT 1.0 Standard Library
= Just a Specification
= Each vendor implemented for own processor

My

EVOLVED BINARY

Other Efforts to Improve
Portability

FunctX (2006)
= A Library of >150 useful common functions
= |mplementations in both XQuery and XSLT

EXQuery (2008)
= Just one specification to date: RESTXQ
= Common implementation in Java

EXPath (2009)
= Standards for extension functions

= Some common implementations in Java \7W b

EVOLVED BINARY

Lessons Learnt

Standards are nice, but require implementations
= Really need >50% of market-share to implement

Vendors are lazy/limited
= Standards are often retrospective!

Implementation Type Mapping (XSLT 1.1)
= Showed great promise for integration
= Must be implementation language agnostic

No single language for low-level implementation
= Won't be accepted by developers

= Won't be accepted by vendors W
VY

EVOLVED BINARY

Lessons Learnt

interface StandardFunc {
Item item(QueryContext gc, InputInfo ii) throws QueryException;

interface BasicFunction {
Sequence eval(Sequence[] args, Sequence contextSequence)
throws XPathException;

interface ExtensionFunctionCall {
Sequencelterator call(Sequencelterator|[] arguments, XPathContext context
throws XPathException;

class XQFunction {
public:
Sequence createSequence(DynamicContext* context, int flags=0) const;

V)

EVOLVED BINARY

Processor Varieties

We want to support XPDL Extension Functions
= For all XPDL processors
= What XPDL procesor implementations exist?

Current XPDL Processor Implementations by Language
12

XPDL Processor Implementations
(0]

C C++ Haskell Java JavaScript .NET Objective-C Pascal i | ' }

Implementation Language EVOLVED BINARY

Our Requirements

Focus on Extension Function Implementation
= Standardisation is alive in W3C and EXPath
= |deally implement just once (ever!)

= |deally compatible with any XPDL processor

Polyglot
= Must support at least Java and C++ implementations
= |deally also C for integration with other languages

Specify an Implementation Type Mapping
= XDM types to/from XPDL processor implementation

language types
V)

EVOLVED BINARY

Our Solution

Source-to-source Compilation

= Using the Haxe cross-platform tookit
= Haxe Lang for high-level implementation
Similar to ECMAScript

= Haxe cross-compiler for target implementation

XDM Implementation Type Mapping to Haxe Lang
Interfaces

Function Implementation Type Mapping to Haxe Lang
Interfaces

= Based on: XPath 3.0 Function Call

= Based on: XQuery 3.0 Function Declaration l W }

EVOLVED BINARY

Haxe XDM Impl. Type Mapping

interface Item {

public function stringValue() : xpdl.xdm.String;
}

interface AnyType {}

interface AnyAtomicType extends Item extends AnyType {}

class Boolean implements AnyAtomicType {
var value: Bool;
public function new(value) {
this.value = value;
}
public function stringValue() {
return new xpdl.xdm.String(Std.string(value));
}
public function haxe() {
return value;
}
}

class String implements AnyAtomicType {

var value: HString;

public function new(value) {
this.value = value;

}

public function stringValue() {
return this;

}

public function haxe() {
return value;

}

s My

EVOLVED BINARY

Haxe Function Implementation
Type Mapping

interface Function {
public function signature() : FunctionSignature;

public function eval(arguments: Array<Argument>, context: Context) : Sequence;

}

class FunctionSignature {
var name: QName;
var returnType: SequenceType;
var paramLists: Array<Array<Param>>;

public function new(name, returnType, paramLists) {
this.name = name;
this.returnType = returnType;
this.paramLists = paramLists;

https:/github.com/exquery/xpdl-extension-lib ¢ 7\ ” >
EVOLVED BINARY

https://github.com/exquery/xpdl-extension-lib

Proof-of-concept

Implementation of EXPath File Module
= Implemented in Haxe Lang
= Coded to XDM Implementation Type Mapping Interfaces

Focused on just file:exists function

[| . .
exists path as string) as boolea

= Function Call Type + Function Implementation Type
= xs:string
= xs:boolean

Status
= Runnable on any processor that supports Haxe

Implementation Type Mapping \7W b

EVOLVED BINARY

file:exists in Haxe

class ExistsFunction implements Function {

private static var sig = new FunctionSignature(
new QName("exists", FileModule.NAMESPACE, FileModule.PREFIX),
new SequenceType(Some(new ItemOccurrence(Boolean))),

[
[

new Param(new QName('path"),
new SequenceType (Some(new ItemOccurrence(xpdl.xdm.Item.String))))

public function new() {}

public function signature() {
return sig;

}

public function eval(arguments : Array<Argument>, context: Context) {
var path = arguments[0].getArgument().iterator().next().stringValue().haxe();
var exists = FileSystem.exists(path);
return new ArraySequence([new Boolean(exists)]);

V)

EVOLVED BINARY

Proof-of-concept: Processor

Added support to eXist
= Static mapping of Haxe XDM types
= Dynamic mapping of Haxe function call interfaces
Bytecode generation of classes and objects: cglib

= Currently ~300 lines of Java code

Status
" https://github.com/eXist-db/exist/tree/xpdl-extensions/src/org/exist/xpdl
= Supports Haxe XDM Function Implementation Type
Mapping
= Supports Haxe XDM Implementation Type Mapping

MY

EVOLVED BINARY

https://github.com/eXist-db/exist/tree/xpdl-extensions/src/org/exist/xpdl

Conclusion

Implement Once
Cross-Compile and Compile Once

Supports any processor
= Requires Vendor to (just once) implement:
XDM Implementation Type Mapping

Function Implementation Type Mapping

V)

EVOLVED BINARY

EVOLVED BINARY

