
Portable EXPathPortable EXPath
Extension FunctionsExtension Functions

Adam RetterAdam Retter
adam@evolvedbinary.comadam@evolvedbinary.com

@adamretter@adamretter

Adam RetterAdam Retter

Consultant
Scala / Java
Concurrency
XQuery, XSLT

Open Source Hacker
Predominantly NoSQL Database Internals
e.g. eXist, RocksDB, Shadoop (Hadoop M/R framework)

W3C Invited Expert for XQuery WG

Author of the "eXist" book for O'Reilly

XML Summer School Faculty (13/09/15)

A talk about incompatibility...A talk about incompatibility...

TODO...TODO...
1. The Portability Problem

2. Previous Efforts

3. Processor Varieties

4. Our Solution

ContextContext
XPDL

XPath Derived Language e.g. XQuery/XSLT/XProc/XForms
Typically uses F+O as Standard Library

Assumption: We want to write apps in XPDLs
Less code/impedance-mismatch

~67% reduction in LoC vs Java 1

Serve/Process the Web
Process structure/semi-structured data
Process mixed-content

1 Developing an Enterprise Web Application in XQuery
http://download.28msec.com/sausalito/technical_reading/enterprise_webapps.pdf

The Portability ProblemThe Portability Problem

XPDLs are typicallyXPDLs are typically
specified as openspecified as open

standardsstandards

...however......however...

Applications written in XPDLsApplications written in XPDLs
are rarely useable acrossare rarely useable across
implementationsimplementations

Vendor Extensions are EVIL!Vendor Extensions are EVIL!
Seem like a good idea at the time

Easy/Quick to get something done

Many Types
Syntax extensions

e.g xquery "1.0-ml";

Data Type Extensions
e.g xs:binary-document

Deviation from Standards
e.g fn:matches($input*, $pattern)

Indexes, Triggers, etc.
Extension Functions

XPDL Extension FunctionsXPDL Extension Functions
Our focus, due to their impact

Disguised by standard function call interface
FunctionCall ::= EQName ArgumentList

Distributed throughout an XPDL code-base

XPDL Extension Functions
Typically implemented in lower-level language

C / C++ / Java / .NET etc.

Vendor/Processor specific
Consistent across processor versions?

EXPath
Requires reimplementation for every processor

Not supported by all processors

Impact of Extension FunctionsImpact of Extension Functions

Impact of Extension FunctionsImpact of Extension Functions

Vendor Extensions ultimately:Vendor Extensions ultimately:
Introduce Hurdles to Portability

Restrict user freedom
Vendor lock-in
Lesson the impact of frameworks

Fragment the XPDL community
Create knowledge/skills silos
Reduce code-sharing
Limit code-reuse
Reduce collaboration
XPDL Processor specific forks of XPDL apps

Other Efforts to ImproveOther Efforts to Improve
PortabilityPortability

XSLT 1.1 (2000)
Stated primary goal - " improve stylesheet portability"
Adds xsl:script for extension functions
Highly contentious. Abandoned!

EXSLT (2001)
Extended the XSLT 1.0 Standard Library
Just a Specification
Each vendor implemented for own processor

Other Efforts to ImproveOther Efforts to Improve
PortabilityPortability

FunctX (2006)
A Library of >150 useful common functions
Implementations in both XQuery and XSLT

EXQuery (2008)
Just one specification to date: RESTXQ
Common implementation in Java

EXPath (2009)
Standards for extension functions
Some common implementations in Java

Lessons LearntLessons Learnt
Standards are nice, but require implementations

Really need >50% of market-share to implement

Vendors are lazy/limited
Standards are often retrospective!

Implementation Type Mapping (XSLT 1.1)
Showed great promise for integration
Must be implementation language agnostic

No single language for low-level implementation
Won't be accepted by developers
Won't be accepted by vendors

Lessons LearntLessons Learnt
XPDL Processors are surprisingly similar!

interface StandardFunc {
 Item item(QueryContext qc, InputInfo ii) throws QueryException;
}

interface BasicFunction {
 Sequence eval(Sequence[] args, Sequence contextSequence)
 throws XPathException;
}

interface ExtensionFunctionCall {
 SequenceIterator call(SequenceIterator[] arguments, XPathContext context)
 throws XPathException;
}

class XQFunction {
 public:
 Sequence createSequence(DynamicContext* context, int flags=0) const;
};

Processor VarietiesProcessor Varieties
We want to support XPDL Extension Functions

For all XPDL processors
What XPDL procesor implementations exist?

Our RequirementsOur Requirements
Focus on Extension Function Implementation

Standardisation is alive in W3C and EXPath
Ideally implement just once (ever!)
Ideally compatible with any XPDL processor

Polyglot
Must support at least Java and C++ implementations
Ideally also C for integration with other languages

Specify an Implementation Type Mapping
XDM types to/from XPDL processor implementation
language types

Our SolutionOur Solution
Source-to-source Compilation

Using the Haxe cross-platform tookit
Haxe Lang for high-level implementation

Similar to ECMAScript

Haxe cross-compiler for target implementation

XDM Implementation Type Mapping to Haxe Lang
Interfaces

Function Implementation Type Mapping to Haxe Lang
Interfaces

Based on: XPath 3.0 Function Call
Based on: XQuery 3.0 Function Declaration

interface Item {
 public function stringValue() : xpdl.xdm.String;
}

interface AnyType {}

interface AnyAtomicType extends Item extends AnyType {}

class Boolean implements AnyAtomicType {
 var value: Bool;
 public function new(value) {
 this.value = value;
 }
 public function stringValue() {
 return new xpdl.xdm.String(Std.string(value));
 }
 public function haxe() {
 return value;
 }
}

class String implements AnyAtomicType {
 var value: HString;
 public function new(value) {
 this.value = value;
 }
 public function stringValue() {
 return this;
 }
 public function haxe() {
 return value;
 }
}

Haxe XDM Impl. Type MappingHaxe XDM Impl. Type Mapping

Haxe Function ImplementationHaxe Function Implementation
Type MappingType Mapping
interface Function {

 public function signature() : FunctionSignature;

 public function eval(arguments: Array<Argument>, context: Context) : Sequence;
}

class FunctionSignature {
 var name: QName;
 var returnType: SequenceType;
 var paramLists: Array<Array<Param>>;

 public function new(name, returnType, paramLists) {
 this.name = name;
 this.returnType = returnType;
 this.paramLists = paramLists;
 }
}

https://github.com/exquery/xpdl-extension-lib

https://github.com/exquery/xpdl-extension-lib

Proof-of-conceptProof-of-concept
Implementation of EXPath File Module

Implemented in Haxe Lang
Coded to XDM Implementation Type Mapping Interfaces

Focused on just file:exists function

Function Call Type + Function Implementation Type
xs:string
xs:boolean

Status
Runnable on any processor that supports Haxe
Implementation Type Mapping

file:exists($path as xs:string) as xs:boolean

file:existsfile:exists in Haxe in Haxe
class ExistsFunction implements Function {

 private static var sig = new FunctionSignature(
 new QName("exists", FileModule.NAMESPACE, FileModule.PREFIX),
 new SequenceType(Some(new ItemOccurrence(Boolean))),
 [
 [
 new Param(new QName("path"),
 new SequenceType(Some(new ItemOccurrence(xpdl.xdm.Item.String))))
]
]
);

 public function new() {}

 public function signature() {
 return sig;
 }

 public function eval(arguments : Array<Argument>, context: Context) {
 var path = arguments[0].getArgument().iterator().next().stringValue().haxe();
 var exists = FileSystem.exists(path);
 return new ArraySequence([new Boolean(exists)]);
 }
}

Proof-of-concept: ProcessorProof-of-concept: Processor
Added support to eXist

Static mapping of Haxe XDM types
Dynamic mapping of Haxe function call interfaces

Bytecode generation of classes and objects: cglib

Currently ~300 lines of Java code

Status

Supports Haxe XDM Function Implementation Type
Mapping
Supports Haxe XDM Implementation Type Mapping

https://github.com/eXist-db/exist/tree/xpdl-extensions/src/org/exist/xpdl

https://github.com/eXist-db/exist/tree/xpdl-extensions/src/org/exist/xpdl

ConclusionConclusion
Implement Once

Cross-Compile and Compile Once

Supports any processor
Requires Vendor to (just once) implement:

XDM Implementation Type Mapping

Function Implementation Type Mapping

Win!Win!

XPDL Extension
Function in

Haxe

XQuery

XSLT

XPath

XProc

XForms

